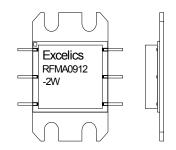


RFMA0912-2W

UPDATED 10/05/2007


9.50 – 11.70 GHz Power Amplifier MMIC

FEATURES

- 9.50-11.70GHz Operating Frequency Range
- 32.5dBm Output Power at 1dB Compression
- 30.0 dB Typical Power Gain @ 1dB Gain Compression
- -41dBc Typical OIM3 @ each tone Pout 21.5dBm

APPLICATIONS

- Point-to-point and point-to-multipoint radio
- Military Radar Systems

Caution! ESD sensitive device.

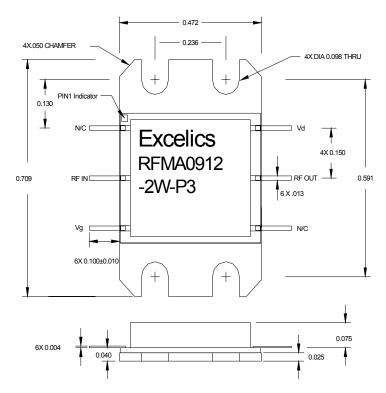
ELECTRICAL CHARACTERISTICS (T_a = 25 °C, 50 ohm, Vdd=7V, Vgg=-5V)

SYMBOL	PARAMETER/TEST CONDITIONS	MIN	TYP	MAX	UNITS
F	Operating Frequency Range	9.50		11.70	GHz
P1dB	Output Power at 1dB Gain Compression	31.5	32.5		dBm
G1dB	Gain @ 1dB gain compression	27.0	30.0		dB
OIMD3	Output 3 rd Order Intermodulation Distortion @∆f=10MHz, Each Tone Pout 21.5dBm		-41	-38	dBc
Input RL	Input Return Loss		-12	-8	dB
Output RL	Output Return Loss		-15	-10	dB
ldd	Drain Current		1900	2150	mA
Vdd	Drain Voltage		7	8	V
Vgg	Gate Voltage		-5		V
Rth	Thermal Resistance (Au-Sn Eutectic Attach)		4.0	4.5	°C/W
Tb	Operating Base Plate Temperature	-30		+80	°C

MAXIMUM RATINGS @25°C

SYMBOL	CHARACTERISTIC	ABSOLUTE	CONTINUOUS 1,2
V_{DD}	Drain Supply Voltage	12V	8V
V _{GG}	Gate Supply Voltage	-8V	-3V
l _{DD}	Drain Current	ldss	3.6A
I_{GG}	Gate Current	240mA	40mA
P_{IN}	Input Power	20dBm	@ 3dB compression
T _{CH}	Channel Temperature	175°C	150°C
T _{STG}	Storage Temperature	-65/175°C	-65/150°C
P_{T}	Total Power Dissipation	30.0W	25.2W

^{1.} Operating the device beyond any of the above rating may result in permanent damage.


^{2.} Bias conditions must also satisfy the following equation Vdd*Idd < (T_{CH} -Tb)/R_{TH}; where T_b = operating base plate temperature

RFMA0912-2W

UPDATED 10/05/2007

P3 Package Outline

9.50 - 11.70 GHz Power Amplifier MMIC

All dimensions in inches

DISCLAIMER

EXCELICS SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. EXCELICS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

EXCELICS SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF EXCELICS SEMICONDUCTOR, INC.

AS HERE IN:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.